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The objective of this program is the exploratory development of doubly rotated cuts of quartz possessing
superior Surface Acoustic Wave (SAW) properties for applications involving environmentally hardened
devices. The key properties examined and optimized both th - retically and experimentally are: first, second
and third order Temperature Coefficients of Delay (TCD), piezoelectric coupling factor, power flow angle.
Bulk Acoustic Wave (BAW) inverse velocity surfaces, degeneracies and leaky waves, and sensitivities of the
above quantities to misorientations and manufacturing tolerances.
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The program consists of two major task areas comprising an interactive numerical/experimental
pproach. Task I involves the numerical computation of the key SAW properties for doubly rotated quartz

substrates for the purpose of locating promising angular ranges with properties superior to the singly
rotated cuts now in existence. More detailed calculations follow to refinethe angular coordinatps ir order to
specify cuts for experimental verification in Task l14n-Taskll, sets otsubstrates with promising orientations
identified in Task I will be prepared and SAW device patterns will be fabricated for evaluation of the key SAW
properties. The experimental results of this task will be correlated with the theoretical predictions and an
iterative process developed for refinement of both theoretical and experimental parameters. As the program
proceeds, working SAW device models will be djlivered as a demonstration of progress and an indication of
the future potential of the doubly rotated cuts)epending upon the progress made and time and budget
limitationsiadditional properties in the area of Prnlinear elasticity will be investigated. This report contains
the results of Task II.
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SECTION I

INTRODUCTION

1. PROGRAM OBJECTIVE

The objective of this program is the exploratory development of doubly rotated cuts of quartz

possessing superior Surface Acoustic Wave (SAW) properties for applications involving environmentally

hardened devices. The key properties examined and optimized both theoretically and experimentally are:

first, second and third order Temperature Coefficients of Frequency (TCF), piezoelectric coupling factor,
power flow angle, Bulk Acoustic Wave (BAW) inverse velocity surfaces, and sensitivities of the above

quantities to misorientations and manufacturing tolerances.

2. PROGRAM SCOPE

The program consists of two major task areas comprising an interactive numerical /experimental

approach. Task I involves the numerical computation of the key SAW properties for doubly rotated quartz

substrates for the purpose of locating angular ranges with properties superior to the singly rotated cuts now

in existence. More detailed calculations followed to refine the angular coordinates in order to specify cuts

for experimental verification in Task II. In Task II, sets of substrates with promising orientations identified in
Task I are prepared and SAW device patterns fabricated for evaluation of the key SAW properties. The

experimental results of this task are correlated with the theoretical predictions, and an iterative process

develops for refinement of both theoretical and experimental parameters. As the program proceeds,
working SAW device models will be delivered as a demonstration of progress and an indication of the future

potential of the doubly rotated cuts. Depending upon the progress made and time and budget limitations,

additional properties in the area of nonlinear elasticity will be investigated.

3. TECHNICAL APPROACH SUMMARY

During this period the first iteration theoretical calculations performed to characterize doubly rotated

cuts of quartz were completed. Theoretically temperature-stable cuts with zero TCF'1' and TCF'21 as small as
-1.0 x 10-' were located. This represents a better than three-fold improvement over the ST cut. Experimental

measurements of the TCF's have been performed on some doubly rotated cuts. Zero TCF" ) SAW devices for

"'Numerical Computation of Acoustic Surface Waves in Layered Piezoelectric Media-Computer Program

Descriptions", William Jones, William Smith, Donald Perry, Final Report F19628-70-C-0027, prepared for Air

Force Cambridge Research Laboratories by Hughes Aircraft Company.

2"On The Temperature Dependence of the Velocity of Surface Waves in Quartz", B.K. Sinha and H.F. Tiersten,

Proceedings of the 32nd Annual Symposium of Frequency Control, 1978, pp. 150-153.
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which the second order temperature term is the dominant term have been fabricated. Measured values of
TCP;" of these devices as low as -1.5 x 10 have been obtained. The agreement between the experimental
and the calculated results was excellent. Measured first order TCF's and those calculated by Sinha and
Tiersten's perturbation program were found to differ by less than 3 ppm/C °, and second order TCF's
calculated by the finite difference method were found to differ by less than 0.005 ppm/Co2. Both the
measured and calculated third order TCF's were found to be too small to be a significant factor in device
performance.

To accurately characterize the properties of doubly rotated quartz, this program has utilized two
basic theoretical approaches for the identification of zero TCF's. Two computer programs available at
Motorola are used. The first program calculates the first, second and third order TCF's of rotated cuts using a
finite difference method.' This technique is simple, well established, and has been used for analytically
determining the temperature coefficient curves for singly and doubly rotated cuts of quartz. To more
accurately determine the first order temperature coefficient of frequency, a second program which
encompasses lattice skewing effects is used. This more complete theoretical approach is based on the work
of Sinha and Tiersten.' Its utility I*,as been verified. The characterization of the other key parameters is
achieved with standard SAW programs used routinely for material characterization and device
development.

Accurately oriented quartz bars, supplied by Motorola Carlisle, are cut and oriented at Motorola and
polished at Crystal Technology. During this program, many substrates are fabricated from a single bar with
incremental angular deviations about selected angular positions. The angular orientation of the doubly
rotated substrates is defined to an accuracy of within ±5 minutes using X-ray diffractometry and precision
wafer saw's with doubly rotating mounts.

A complete SAW test area and optical laboratory form the basis for the experimental evaluation of the
key SAW parameters of the doubly rotated quartz delay lines, oscillators and resonators. The equipment is
set up for rapid display, measurement and recording of propagation directions, TCF's, velocities, beam
steering angles and diffraction.

The excellent agreement between the experimental and theoretical results, and the success with
which low TCF cuts have been located, confirmed the utility and accuracy of the techniques used in the
program. The second theoretical and experimental iterations promise to yield orientations and devices with

even greater temperature stability than those already obtained.
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SECTION i

TECHNICAL DISCUSSION

1. INTROOUCTION

The search for a temperature stable cut of quartz for application to SAW devices has lead to the
investigation of the doubly rotated cuts. Theoretical studies have indicated that doubly rotated cuts of

quartz promise much better temperature stability than the commonly used ST cut. Task I of this program,
which encompassed the first iteration calculations of the doubly rotated cuts of quartz, has been

successfully completed. Task II, with major emphasis on experimental work, is currently being performed.

In Task I theoretical analyses have been performed and angular rotations promising very low TCF1'
and TCF have been plotted. Important SAW device design parameters, such as coupling coefficient,
velocity and power flow angle, have also been computed to characterize each area. As part of Task II,
experimental results establishing the degree of correlation with theory have been obtained.

Theoretical propagation characteristics, as discussed in paragraph 2 below, impose strict

fabrication tolerances on the SAW cuts and mask alignment due to large values of 3TCF I a*. Thus a mask
had to be designed to compensate for fabrication errors. This design work is presented in paragraph 3. Since
experimental technique is an important criteria in the determination of correlation between theory and
experiment, all procedures followed as well as equipment used are discussed in paragraph 4. Paragraph 5
presents experimental determination of propagation characteristics which illustrate an excellent agreement

between theoretical calculation and experimental results. Paragraph 6 contains the results of the doubly
rotated cut TCF measurements made to date.

Theoretical calculations have been in good agreement with experimental results. Doubly rotated cuts
of quartz with an improvement of TCF1'1 by at least a factor of two over the ST cut have been obtained. A
further improvement is expected after a second iteration has been performed and promising areas

examined.

2. THEORETICAL PROPAGATION CHARACTERISTICS

In cutting quartz and aligning masks on it, there is always sonie maximum achievable accuracy. It is

also useful to know how all of the acoustic quantities considered vary with angle. Quantities such as TCF,
phase velocity, power flow angle, aVIV, and bulk wave velocity surfaces are of interest to this program.

These quantities can be accurately determined by directly calculating the quantities at o = (oo+a,), e=

(eo+a,), and * = (,o+a*). Calculation of the angular dependence on the first, second, and third order TCF's
is, of course, our primary task. Of these three quantities, the first order TCF is most sensitive to angular
variation (refer to Tables 1, 2, and 3). Quantities such as velocity (Table 2), power flow angles (Table 2),

coupling coefficients (Table 3), and second and third order TCF's (Table 1) do not vary quickly with angle.
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This is not the case for TCFI". Table 3 contains a summary of aTCPIal. The large values of aTCFUI'Ia,
impose strict fabrication tolerances on the SAW cuts and mask alignment. Therefore it is essential to design

a mask with reference registration marks to accurately determine the transducer orientation relative to the

crystal edges. These reference markers are fabricated on all of the measured devices, so that propagation

direction is accurately determined to within ±25 minutes. Fabrication accuracy to within 6 minutes is
required to keep the total temperature variation due to TCF '1 within 45 ppm for aTCF"Va , = 0.3
(PPM/ 0C)/degree over the temperature range of -500C to 1000C. Table 4 contains summaries of aTCF("/ao
and aTCF"/ae. These values impose fabrication tolerances on the rotated quartz plate angles o and o of a4,
and ae less than 12 minutes to keep the total temperature variation due to aTCF' (15/40/40)/S within 45
ppm over the temperature range of -50°C to 1000C for example. This linear temperature variation may be
compensated for by varying , on any particular cut if all other cut parameters vary slowly with angle. To
date all other cut parameters have been found to vary slowly with Phi, Theta and Psi.

TABLE 1. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS

Angles of Zero TCF *1'

Degrees TCFI 2/°C2(X10 -8) TCF' 3/°C3(X10-,o)
(S and T's Program) Finite Difference Finite Difference

Phi Theta Psi Program Program

6 26 136.31 -1.4
6 27 135.93 -1.3 0.67
6 28 135.59 -1.3 0.57
7 26 135.99 -1.5
7 27 135.64 -1.4
7 28 135.27 -1.3 0.65
8 26 135.74 -1.4 0.65
8 27 135.36 -1.4
8 28 134.97 -1.3
1 26 137.78 -1.2 0.68
1 27 137.48 -1.2 0.65
1 28 137.17 -1.1 0.67
0 26 138.07 -1.2 0.67
0 27 137.78 -1.1 0.68
0 28 137.49 -1.1 0.62

-1 26 . 138.37 -1.2 0.60
-1 27 138.09 -1.2 0.62
-1 28 137.80 -1.1 0.73
14 39 40.195 -1.0 0.64
14 40 40.415 -1.0 0.68
14 41 40.64 -1.0 0.75
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TABLE 1. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS (Cont)

Angles of Zero TCF1"

Degrees TCF' 2)/°C2(X1I )  TCFI"/0C'(XlO- °)

(S and T's Program) Finite Difference Finite Difference

Phi Theta Psi Program Program

15 39 39.79 -1.0 0.63
15 40 40 -1.0 0.74
15 41 40.23 -1.0 0.73
16 39 39.4 -1.0 0.68
16 40 39.605 -1.0 0.66
16 41 39.825 -1.1 0.60

TABLE 2. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS

Angles of Zero TCF"',
Degrees

(S and T's Program) Velocity K2  Power Flow

Phi Theta Psi (Msec) (X10 -3) .'.igle (Degree)

6 26 136.31 3296.84 1.12 -0.3
6 27 135.93 3293.60 1.12 -0.2
6 28 135.59 3290.63 1.12 -0.1
7 26 135.99 3303.33 1.12 -0.5
7 27 135.64 3299.70 1.12 -0.4
7 28 135.27 3296.33 1.12 -0.3
8 26 135.74 3310.15 1.12 -0.7
8 27 135.36 3306.11 1.12 -0.6
8 28 134.97 3302.32 1.10 -0.5
1 26 137.78 3268.80 1.10 +0.7
1 27 137.48 3267.44 1.10 +0.9
1 28 137.17 3266.36 1.10 +1.0
0 26 138.07 3264.09 1.12 +0.9
0 27 137.78 3263.09 1.10 +1.1
0 28 137.49 3262.35 1.10 +1.2
-1 26 138.37 3259.65 1.10 +1.1
-1 27 138.09 3259.01 1.10 -1.3
-1 28 137.80 3258.64 1.08 +1.5
14 39 40.195 3298.60 0.96 -7.7
14 40 40.415 3306.67 0.96 -8.1
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TABLE 2. PROPAGATION CHARACTERISTICS OF SELECTED ORIENTATIONS (Cont)

Angles of Zero TCF' 1 ,

Degrees

(S and T's Program) Velocity K2 Power Flow

Phi Theta Psi (Msec) (XlO-3) Angle (Degree)

14 41 40.64 3315.19 0.94 -8.6
15 39 39.79 3301.82 0.96 -7.8
15 40 40.00 3310.14 0.94 -8.3
15 41 40.23 3319.09 0.98 -8.6
16 39 39.4 3305.38 0.96 -8.0
16 40 39.605 3314.03 0.98 -8.4

TABLE 3. aTCF('I/a FOR SELECTED CUTS

Angles of Zero TCF"' Degrees
(S and T's Program) aTCF1'/a

Phi Theta Psi (PPM/C°)/Degree

6 26 136.31 +2.7
6 27 135.93 +2.7
6 28 135.59 +2.7
7 26 135.99 +2.7
7 27 135.64 +2.7
7 28 135.27 +2.7
8 26 135.74 +2.7
8 27 135.36 +2.7
8 28 134.97 +2.7
1 26 137.78 +2.8
1 27 137.48 +2.8
1 28 137.17 +2.8
0 26 138.07 +3.0
0 27 137.78 +3.0
0 28 137.49 +3.0

-1 26 138.37 +3.0
-1 27 138.09 +3.0
-1 28 137.08 +3.0
14 39 40.195 -3.5
14 40 40.415 -3.5
14 41 40.64 -3.5
15 39 39.79 -3.5
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TABLE 3. aTCF"'/aq, FOR SELECTED CUTS (Cont)

Angles of Zero TCF ' Degrees
(S and T's Program) aTCF1'/a*

Phi Theta Psi (PPM/C°)/Degree

15 40 40 -3.5
15 41 40.23 -3.5
16 39 39.4 -3.7
16 40 39.605 -3.7
16 41 39.825 -3.7

TABLE 4. aTCFt'/a# AND aTCF"VIae FOR SELECTED CUTS

Angles of Zero TCF)' ), Degrees
(S and T's Program) aTCF '1/ao aTCF111/ae

Phi Theta Psi (PPM/C°)/Degree (PPM/C°)/Degree

7 27 135.64 -0.7 -0.5
0 27 137.76 -0.8 -0.8

15 40 40.00 +1.5 -0.7

3. MASK DESIGN

A mask was designed to take into account the sensitivity of TCF"' due to small variations in the cut
angles. The design incorporates rotated structures. Each device is offset with respect to its neighbor by 0.20.
Three individual devices are illustrated in Figure 1. The device specifications are as follows:

I. Transducer periodicity: 12.192 Am (center frequency -260 MHz; varies with crystal

orientation)

b. Delay time: 360x (-1.4 As) (varies with crystal orientation)

9. Number of sets in output transducer: 15

d. Electrode pairs per set: 2.25

I. Electrode pairs in input transducer: 24

I. Aperture width: Input: 70 wavelengths

Output: 50 wavelengths

7



Figure 1. SAW Oscillator Device
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Figure 2 is a photograph of a wafer fabricated using the above-mentioned design. Twelve oscillators

propagating in different 0 directions are fabricated on a single wafer. The principal advantage of this design

is the ability to compensate for fabrication errors. From the experimental results plotted in Figure 3, we are

able to observe significant frequency shifts due to small variations in PSI angle. These results confirm our

theoretical calculations.

4. EXPERIMENTAL MEASUREMENT OF TCF

Wafers with orientations that provide low temperature coefficients of frequency were used to

fabricate SAW oscillator devices. Considerable care has been taken to minimize fabrication tolerances. For

angles o and 0, the estimated accuracy is within ±4 minutes; for angle 0, the accuracy is within ±25 minutes.

The delay line oscillators described previously were used to measure the frequency stability at

different temperatures. The experimental apparatus is shown in Figure 4. No coils were used to match the
devices in order to eliminate inductance changes in the matching circuit over the temperature range tested.

The switches are designed to test ten oscillators in the same temperature chamber. The phase

stability of the switches is essential to the measurements. The circuits are shown in Figure 5. The phase

stability of the switches was found to be adequate for measuring the temperature stability of the device.

A digital thermacouple (Fluke 2160A-T) was taped to the bottom of the fixture to measure device

temperature. The Fluke 2160A-T is accurate to within ±20C over the temperature range of -750C to +150 0C. A
thermometer was also used to measure the oven air temperature. Semi-rigid cable constituted all
interconnections. This reduces loss, shields against feedthrough, and makes the apparatus less sensitive to

the testing environment. ANZAC DS109 power splitters and AVETEK AWL500M amplifiers were used in the

feedback loop. A Systron Donner (PLS 50-1) provided the DC power supply voltage. The mean supply voltage
was maintained at 15.000 ± 0.001 volts during the measurements.

Frequency measurements were taken every 100C, spanning the range from -550C to +135 0C.

Stabilization of temperature and frequency was attained for each measurement before data was taken. This

ensures that the device is in thermal equilibrium with its environment. The total experimental error is

estimated to be less than ±10 PPM.

5. EXPERIMENTAL PROPAGATION CHARACTERISTICS

The propagation characteristics of selected devices were measured to verify the calculations. The

experimental measured velocity is

v = fA x = 12.192 14m

Table 5 lists the experimental velocities for the various cuts. The deviation (up to 0.2%) is in part caused by

the slight deviation of crystal orientation due to the fabrication process, and in part caused by the

uncertainty of center frequency due to the unknown phase shift in the feedback loop (±0.25 MHz).

9
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Figure 2. Photograph of a Fabricated Wafer With Propagation Directions of

8027/27"54'/133054' + n(O.2 0)
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The power flow angle of the doubly rotated cut quartz wafer has been measured by the laser probe

technique. The measured result is in good agreement with calculations.

TABLE 5. EXPERIMENTAL VELOCITIES OF CUTS

Measured Calculated
Phi Theta Psi Velocity Velocity

-1.05 28.0667 136.534 3257.4 3260.9
-0.9667 26.233 138.449 3256.8 3259.4
-0.133 28.1 137.692 3259.0 3261.5
-0.033 26.7 138.859 3262.1 3262.5

0.633 26.15 137.016 3267.6 3267.7
5.583 27.833 135.194 3289.7 3288.9
5.583 27.833 135.994 3290.7
6.0 26.9667 135.812 3288.9 3293.7
6.067 25.933 133.099 3298.8 3299.4
7.41 27.83 134.2 3296.8 3299.1

8.033 26.9667 134.618 3304.1 3306.1
14.2833 39.1167 40.227 3294.8 3301.4
14.2833 39.1167 40.627 3296.8 3304.6
15.25 39.2 39.6187 3300.7 3303.4
15.3 40.6833 40.0308 3314.0 3317.3

The block diagram of the experimental set-up is shown in Figure 6.

In this procedure, the first order deflecting light due to the presence of the acoustic wave is measured by the
photomultiplier. The light intensity is proportional to the acoustic power, while the angle of deflection is
given by:

Sin e. = Sin -o + n\

A

Where e. = angle of deflection of nth order

o = angle of specular reflection

k = optical wavelength

A = acoustic wavelength

14
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The angular relation is demonstrated in Figure 7. The optical beam is provided by a He-Ne laser with spot
size of =100 u. The acoustic waves are generated by a 260 MHz transducer with A equal to 12.192 M,. During
the measurement, the SAW device is translated up and down so that the optical beam is scanned across the
acoustic path to detect the acoustic beam intensity distribution. The test equipment is shown in Figure 8.

Figures 9 and 10 show examples of plots of the relative acoustic beam intensities indicated by the

deflected laser beam. These plots were taken in the near- and far-field regions, respectively. The exact
distance between the near-field scan and the far-field scan is 8.131 mm. The center of the beams is estimated
to be 0.05 mm in separation.

The measured power flow angle for this cut is

0, = tan-' -0.05 _-0.35208.131

The calculated power flow angle for this cut is

6; = -0.30

The good agreement between the measurement and the calculated results indicates that the calculation is

accurate. Acoustic dispersion and loss can also be calculated from this data.

6. EXPERIMENTAL MEASUREMENT OF FREQUENCY VERSUS TEMPERATURE

A few representative frequency-temperature measurements are presented in Figures 11 through 15.
The stars represent experimental data points. The solid lines are linearly regressed curves used to define the
measured first, second, and third order TCF's for these cuts, given in Table 6. Figures 11 through 15 are
representative of cuts in region (YX wit) 7/27/135. Cut (YX/wlt) 6.57/26.88/134.9 of Figure 11 has a small
linear frequency term at room temperature and is well suited for use at both high and low temperatures. Its
second order TCF is in good agreement with the computer calculations and is considerably smaller than that
of ST-cut quartz (see Table 6). Cut (YX wit) 5.58/27.83/135.1 of Figure 12 displays a larger total frequency
variation over the range shown but is much more stable at higher temperatures. This illustrates how a
simple change of crystal orientation can be used to temperature-compensate doubly rotated cut SAW
devices for different mean operating temperatures. A slight rotation of s,, as shown in Figure 3, could be used
to set the first order TCF to zero while slightly altering the second order TCF of the device. This cut also
represents a substantial improvement over the ST-cut (see Table 6). Figures 11 through 15 summarize some
of our typical measurements to date. Results in this area are in excellent agreement with the theory. One of
these cuts (8.033/26.9671134.6) has temperature stability of approximately 40 ppm from O°C to 130'C: it is
suitable for systems or weapons operating in elevated temperatures (see Figure 14).

On all cuts tested, the agreement between the experimental and calculated results has been excellent.
These results establish a firm basis for performing the second iteration search for the optimum TCF
orientations.
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Figure 8. Test Set-up for Laser Probing of Acoustic Wave Beam-Steering Characteristics
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SECTION III

CONCLUSION

It has been determined that TCF " is the most sensitive to angular variations; thus the large values of

aTCF1/l0 imposes strict fabrication tolerances on processing. It was necessary to incorporate a mask

design using rotated structures to compensate for processing errors within the allowed fabrication

tolerances.

Theoretical calculations of power flow angle, coupling coefficients, and second and third order TCF's

indicate that they do not vary quickly with angle. Thus, by varying q, on any particular cut, linear

temperature variations can be compensated for while all other cut parameters vary only slightly.

Experimental design and procedures followed during the measurements of the TCF's indicate that the

experimental error is within 10 PPM. Table 6, which displays the comparison of theoretical and experimental

results, illustrates the excellent agreement to date. Experimental results indicate that an improvement in

TCFI2  by at least a factor of two over ST quartz can be obtained. A second iteration approach using a higher

resolution is expected to improve the TCF *2  of the doubly rotated quartz over the ST cut by a factor of three to

four. Determinations of experimental propagation characteristics using the laser probe technique

demonstrated good agreement between measured and calculated values.

27
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APPENDIX

TCF MAPS

This appendix contains TCF maps with Theta less than zero. The TCF maps with Theta greater than
zero can be found in the first interim report. The two sets of maps span the entire set of singly and doubly
rotated cuts on quartz. The circles denote values of the first-order SAW TCF. The crosses denote values of
the second-order SAW TCF. The corresponding scales are found on the left and right hand sides of the
graphs. Only data calculated on the 100 x 100 grid is plotted.
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